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Cloning, central nervous system expression and chromosomal
mapping of the mouse PAK-1 and PAK-3 genes
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Abstract

Two cDNAs encoding PAK kinases were isolated from a mouse embryo library by screening with a PCR-generated probe
derived from the kinase domain of a rat PAK kinase. These cDNAs, designated PAK-1 and PAK-3, encode mouse PAK kinases
of 545 and 544 amino acids, respectively. Both proteins possess an N-terminal Cdc42/Rac interacting binding domain (CRIB)
and a C-terminal serine/threonine kinase domain. Comparison of the two mouse PAK kinases revealed that the proteins show
87% amino acid identity. Northern analysis of a multiple mouse tissue blot with a PAK-1 probe detected a 3.0 kb transcript that
was almost exclusively expressed in the brain and spinal cord compared to other tissues such as lung, liver and kidney. A similar
pattern of central nervous system tissue expression of PAK-3 transcripts of 3.6 and 8 kb was also observed. Analysis of two
multilocus genetic crosses localized Pak1 and Pak3 to a position on chromosome 7 and X, respectively. The high level of PAK-1
and PAK-3 kinase expression in the mouse brain and spinal cord suggests a potentially important role for these kinases in the
control of the cellular architecture and/or signaling in the central nervous system. © 1999 Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction (Manser et al., 1994, 1995; Martin et al., 1995; Teo
et al., 1995; Diekmann et al., 1995).

Although at least three isoforms of PAK kinasesRac and Cdc42 GTPases interact with their various
(a/A/1, b/B/3, c/2) exist in mammalian cells, their exacteffector proteins to control a number of signaling path-
biological role in Cdc42 and Rac signaling pathways isways, including cell polarization, actin polymerization,
not completely understood. PAK kinases appear toand kinase signaling ( Van Aelst and D’Suza-Schorey,
function in activating stress response signaling pathways,1997). One of the first groups of Cdc42 and Rac effector
such as JNK and HOG kinase pathways (Bagrodiaproteins identified were the PAK kinase family of
et al., 1995; Polverino et al., 1995; Zhang et al., 1995).serine/threonine kinases (Manser et al., 1994). PAK
The potential role of these kinases in actin polymeriza-kinases bind to both Cdc42 and Rac, but not the Rho
tion, however, remains unresolved. Several groups haveGTPase in a GTP-dependent manner. Binding of Rac
found that PAK kinases control actin polymerizationor Cdc42 to PAK kinases induces a conformational
(Sells et al., 1997; Manser et al., 1997), while otherchange, thereby activating their intrinsic kinase activity
groups have not been able to substantiate these findings
(Lamarche et al., 1996; Westwick et al., 1997). There is

Abbreviations: cDNA, DNA complementary to RNA; CRIB, some evidence that PAK kinases may function in addi-
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tional signaling pathways. For example, PAK-c/PAK-2mRNA, messenger RNA; PAK, p21 activated kinase.
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treatment and may be involved in membrane and mor- Biosystems) and an automated sequencer (Applied
Biosystems 373A). All database searches were per-phological changes seen in apoptosis (Rudel and
formed using the GCG version 7.0 software package.Bokoch, 1997). Sphingolipid and other lipid molecules

have also been shown to activate PAK, independent of
2.2. Northern analysis of PAK-1 and PAK-3Rac and Cdc42 (Bokoch et al., 1998). Finally, there is

strong evidence that the human immunodeficiency virus
Total RNA was prepared from a number of different(HIV ) Nef genes activate PAK and may be important

mouse tissues and brain regions by the method ofin virulence (Sawai et al., 1996 ). Together these studies
Chomczynski and Sacchi (1987). Total RNA (10 mg persuggest an important role of PAK kinases in a
lane) was separated by electrophoresis on 1.2% agaroseCdc42/Rac signaling, as well as other signaling
formaldehyde gels, and transferred to nitrocellulose bypathways.
capillary transfer. A paired set of blots was used toIn order to understand more about the biological
evaluate PAK-1 and PAK-3 mRNA expression. Thefunction of PAK kinases, we have cloned and sequenced
PCR-derived probe used for mouse PAK-1 correspondedtwo mouse PAK kinases, studied their mRNA distribu-
to the 550 bp region from the 5∞ untranslated region andtion, and mapped their chromosomal location. We found
5∞-end of the gene (from nt 1 to 556 from GenBankthat two mouse PAK isoforms, PAK-1 and PAK-3, are
entry AF082077). The PCR-derived probe for mousestructurally quite similar, are highly expressed in the
PAK-3 corresponded to a unique 267 bp fragment withincentral nervous system, and map to mouse chromosome
the coding sequence of the gene (from nt 356 to 623 of7 and X, respectively.
GenBank AF082297). Probes were labeled with 32P
by nick-translation and hybridized under stringent
conditions [42°C, 50% (v/v) formamide, 5×SSPE2. Material and methods
(1×SSPE=150 mM NaCl, 10 mM phosphate, pH 7.4,
1 mM EDTA), 0.1% (w/v) SDS, 0.1 mg/ml yeast tRNA,2.1. Isolation and characterization of mouse PAK clones
5×Denhardt’s, 1% (w/v) dextran sulfate]. Following
washing at 60̊C with 2×SSPE, 0.1% SDS, the blotsA PAK probe was obtained using PCR with human
were exposed to X-ray film overnight.

fibroblast cDNA as template and degenerate oligonucle-
otides based on published amino acid sequences (amino

2.3. Chromosomal mapping of PAK-1 and PAK-3
acids 488–540) of rat PAK (Manser et al., 1994). DNA
sequencing confirmed that this was a human PAK-2 Two sets of multilocus genetic crosses were analyzed
cDNA. This PAK probe was labeled with 32P by the by Southern blotting for inheritance of restriction size
random prime method (Boehringer Mannheim, variants of the mouse PAK-1 (Pak1) and PAK-3 (Pak3):
Indianapolis), purified and used as probe to screen a (NFS/N or C58/J×Mus musculus musculus)×M. m.
mouse 14 day embryo l-ZAP cDNA library. The DNA musculus and (NFS/N×M. spretus)×M. spretus or
library screening hybridization conditions were 68°C for (C58/J×M. m. musculus)×M. m. musculus, and
18 h in 6×SSC, 5×Denhart’s reagent, 0.5% SDS and (NFS/N×M. spretus)×C58/J J ( Kozak and Buckler,
100 mg/ml of denatured salmon sperm DNA. After 1997). DNAs from the progeny of these crosses have
washing at 68°C in 1×SSC and 0.1% SDS, the filters been typed for over 1200 markers which map to all 19
were air-dried and exposed to X-ray film with intensify- autosomes and the X chromosome. The same 550 bp
ing screens. Following three rounds of screening, ten and 267 bp PCR fragments used in Northern analysis
positive clones were plaque-purified and then rescued as were also used to chromosomally map PAK-1 and
plasmids. From these ten positive clones, three different PAK-3, respectively. Mapping data were stored and
sets of PAK clones (PAK-1, PAK-2 and PAK-3) were analyzed using the program LOCUS developed by C.E.
identified by restriction enzyme analysis and DNA Buckler (NIAID, Bethesda, MD). Percentage recombi-
sequencing. The longest PAK-1 and PAK-3 clones con- nation and standard errors between specific loci were
tained 2.2 kb and 2.4 kb inserts, respectively. However, calculated from the number of recombinants (Green,
PAK-3 was missing the 5∞-end of the coding sequence. 1981). Loci were ordered by minimizing the number of
Approximately 100 bp of additional 5∞-end PAK-3 recombinants.
sequence, including the translation start site, was
obtained by rescreening the 14 day embryo cDNA
library with a PCR probe generated from the initial 3. Results
PAK-3 clone. PAK clones were sequenced by the nucleo-
tide method with Sequenase (United States 3.1. Cloning of mouse PAK-1 and PAK-3
Biochemicals, Cleveland, OH) using sequence-deduced
oligonucleotide primers. In some cases DNA sequencing A portion of a human PAK cDNA was amplified

and used as probe to screen a 14 day whole embryowas performed using a cycle sequencing kit (Applied
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mouse cDNA library. The primary screen revealed over Finally sequence analysis of a third distinct partial
mouse cDNA (designated PAK-2) containing part of35 positive clones from the screening of 3×108 plaques.

Following three rounds of screening, three different sets the catalytic domain showed identity to the rat and
human PAK-c/PAK-2 (Martin et al., 1995). Theseof PAK clones were identified by restriction enzyme

analysis and DNA sequencing. Two of the genes, desig- results confirm that there are three PAK kinase isoforms
in the mouse.nated PAK-1 and PAK-3, were sequenced over their

entire coding region (GenBank Accession Nos.
AF082077 and AF082297). PAK-1 represents a novel 3.2. Sequence homology of mouse PAK-1 and PAK-3
PAK isoform in the mouse (Fig. 1), while /PAK-3 was
cloned previously by Bagrodia et al. (1995). Northern Overall, PAK-1 and PAK-3 encode proteins that are

identical over 72% of their length (Fig. 2). In additionanalysis suggests that these clones do not represent full-
length cDNA sequences and are missing additional 5∞- to the high conservation of both the kinase and CRIB

domain, both forms also contain proline-rich motifsand 3∞- untranslated sequences. The PAK-1 cDNA
encodes a 545 amino-acid residue protein (Fig. 1). There which may represent potential SH3 binding sites. Both

PAK-1 and PAK-3 show a high degree of homology tois only one in-frame methionine that matches the optimal
consensus as defined by Kozak (1989). PAK-1 has a PAK kinases from other species including those from

human, rat, Drosophila and Caenorhabditis elegans (datapredicted molecular mass of 60.7 kDa and a pI=5.53.
PAK-3 cDNA encodes for a 544 amino-acid residue not shown). Although PAK-1 and PAK-3 appear to be

quite similar, there are regions that are different. Forprotein (Fig. 2). PAK-3 has a predicted molecular mass
of 60.8 kDa and a pI=5.32. Mouse PAK-1 is nearly example, a region consisting of 15 acidic amino acid

residues (amino-acid residues 172–186) exists within theidentical (98%) to both rat and human PAK-A/PAK-1
proteins and thus represents the mouse homologue. PAK-3 isoform, while a smaller acidic stretch occurs in

Fig. 1. Nucleotide and predicted amino-acid sequence of mouse PAK-1. Nucleotides are numbered on the left; amino-acid residues are numbered
on the right. This sequence has GenBank Accession No. AF082077.
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Fig. 2. Homology between mouse PAK-1 and PAK-3. The amino-acid sequence comparison is shown between the two PAK isoforms using the
program BESTFIT. Identical amino-acid residues are denoted by a dashed line; + denotes semiconservative amino-acid substitutions. The Cdc42
Rac interactive Binding (CRIB) domain is boxed. Roman numerals indicate conserved kinase subdomains. The nucleotide and amino-acid sequences
of PAK-1 and PAK-3 have GenBank Accession Nos. AF082077 and AF082297, respectively.

the PAK-1 (Fig. 2). It is possible that these differences
may influence how different PAK isoforms interact with
various substrates or localize to different regions within
the cell.

3.3. Tissue distribution of mouse of mouse PAK-1 and
PAK-3

Northern hybridization analysis on RNA extracted
from various mouse tissues and brain regions was per-
formed to examine the tissue distribution of PAK-1 and
PAK-3. Because of the high similarity between the two
proteins, cDNA probes were utilized from distinct
regions of the two PAK isoforms to avoid cross-hybrid-
ization. Northern analysis (Fig. 3) revealed that the
PAK-1 probe hybridized to a single transcript of 3.0 kb.

Fig. 3. Northern analysis of mouse PAK-1 mRNA. Total RNA from
PAK-1 was not expressed significantly in peripheral mouse tissues and brain regions were analyzed for PAK-1 mRNA
tissues such as lung, liver, kidney or heart, as compared expression. The position of the 28S and 18S ribosomal RNA are

shown. One transcript of 3.0 kb was detected.to various brain regions. Among the brain regions
tested, PAK-1 was expressed at a very high level in the
thalmus, cerebellum, midbrain and pons medulla. size (Fig. 4). Similar results were observed in the rat

(Manser et al., 1995), using a probe derived from aIn the brain and spinal cord, the PAK-3 probe
hybridized to two transcripts of 3.6 and approx. 8 kb in different region. The highest level of PAK-3 mRNA
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3.4. Chromosomal mapping of the mouse Pak1 and Pak3
genes

PvuII digestion identified major PAK-3 fragments of
14.5 and 8.2 kb in NFS/N and 15.5 and 8.2 kb in M.
spretus and M. m. musculus. For PAK-1, HpaI produced
fragments of 23, 18.7 and 13.5 kb in M. m. musculus
and 18.7, 13.5, and 6.0 in NFS/N. PvuII digestion
produced PAK-1 fragments of 8.5 and 6.6 kb in M.
spretus and 6.9 and 7.2 in NFS/N. The inheritance of
these fragments was typed in both genetic crosses and
the genes encoding PAK-1 and PAK-3, Pak1 and Pak3
were mapped to mouse chromosome 7 and X, respec-
tively (Fig. 5).Fig. 4. Northern analysis of PAK-3 mRNA. Total RNA from mouse

tissues and brain regions were analyzed for PAK-3 mRNA expression.
The position of the 28S and 18S ribosomal RNA are shown. Two
transcripts of 3.6 and 8 kb were detected.

4. Discussion

Here we describe the cloning, characterization andexpression was seen in the spinal cord. The PAK-3
probe, like PAK-1, showed little hybridization to RNA chromosomal location of two mouse PAK genes. The

interest in PAK kinases stems from the fact that thesefrom peripheral tissues, although some hybridization
was seen in the lung and testis. The testis and lung kinases bind and are activated by Cdc42 and Rac

(Manser et al., 1994; Martin et al., 1995; Diekmanntranscripts were of molecular mass different from that
seen in central nervous system tissues, and thus may et al., 1995) and thus function in Cdc42/Rac signaling

pathways. Cloning of mouse PAK-1 revealed that thisrepresent cross-hybridization of the probe with other
genes, or alternatively spliced forms of the PAK-3 gene is highly conserved at both the nucleotide and

amino-acid level. The mouse PAK-3 gene has beentranscript. Interestingly, differential expression of the
two PAK-3 transcripts was seen in various tissues. For cloned previously (Bagrodia et al., 1995). We have used

these kinases for recombinant protein production toexample, the thalamus express mostly the 3.6 kb form,
whereas hippocampus, midbrain, and pons medulla functionally dissect the biochemical properties of these

kinases (Diekmann et al., 1994; Burbelo et al., 1995).express mainly the 8 kb form.

Fig. 5. Pak1 and Pak3 map to mouse chromosome 7 and X. Recombination fractions are given to the right for each locus pair, with the first
fraction representing results from the M. m. musculus crosses and the second from the M. spretus crosses. Percent recombination and standard
errors are given in parentheses and were determined according to Green, 1981. Human map locations for homologues of the underlined genes are
given to the left of the map.
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The distribution of the mRNA of the two mouse targeted to the plasma membrane induces neurite out-
growth (Daniels et al., 1998). Finally, future efforts mayPAK isoforms was studied in multiple tissue Northern

blots. Our Northern analysis data, together with those determine the specific effects of these genes by using
these cDNA clones to obtain genomic clones for theof Manser et al. (1995) support an important role of

the PAK-1 and PAK-3 kinases in neuronal tissue. purpose of generating knockout mice. It is expected that
these knockout mice may be useful as mouse models ofConsistent with these mRNA results, Manser et al.

(1995) reported relatively high levels of rat central nervous system disorders.
PAK-1/PAK-A and PAK-3/PAK-B protein in neurons
versus other cell types such as glial cells. This pattern
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